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Summary. The concept of markaracter is proposed to discuss marks and characters 
for a group of finite order on a common basis. Thus, we consider a non-redundant set 
of dominant subgroups and a non-redundant set of dominant representations (SDR), 
where coset representations concerning cyclic subgroups are named dominant repre- 
sentations (DRs). The numbers of fixed points corresponding to each DR are collected 
to form a row vecter called a dominant markaracter (mark-character). Such dominant 
markaracters for the SDR are collected as a markaracter table. The markaracter table 
is related to a subdominant markaracter table of its subgroup so that the corresponding 
row of the former table is constructed from the latter. The data of the markaracter 
table are in turn used to construct a character table of the group, after each character 
is regarded as a markaracter and transformed into a multiplicity vector. The con- 
cept of orbit index is proposed to classify multiplicity vectors; thus, the orbit index 
of each DR is proved to be equal to one, while that corresonding to an irreducible 
representation is equal to zero. 
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1. Introduction 

Character tables for reducing linear representations into irreducible ones belong to the 
standard repertoire of chemical group theory. Since they are widely applied to various 
fields of chemistry, textbooks on chemical group theory [1]-[8] use many pages to 
introduce the concept and applications of character tables. On the other hand, the 
concept of mark tables for assigning permutation representations to coset representa- 
tions, which has been developed by Burnside [9], has been unjustly neglected for a 
long time not only in chemical fileds but also in mathematics. Among several works 
using mark tables, Sheehan's enumeration of graphs [10], Kerber's contribution [11], 
Redfield's paper [12], our enumeration of digraphs [13], and our enumeration of poly- 
hedra [14] can be mentioned for discussing mathematical applications. With respect to 
applications to chemistry, various methods for the enumeration of isomers are based 
on mark tables; e.g., Hgsselbarth's enumeration of isomers [15], Mead's work on a 
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combination of mark tables and double cosets [16], our USCI (unit-subduced-cycle- 
index) approach [17, 18], our elementary superposition theorem [19], and Lloyd's 
mark version of the Redfield-Read superposition theorem [20]. Up to now, the tables 
of two types have been independently used in different fields, since they have been 
developed on the basis of different disciplines. 

We have recently reported an application of coset representation to the construc- 
tion of symmetry adapted functions [21], in which coset representations are reduced 
into irreducible representations by using character tables. This treatment implies a 
relationship between mark tables and character tables, since both the tables have thus 
been related to the same coset representations. Since such a relationship has not been 
discussed, it should be a target in order that we reach adeeper insight to group theory 
in both chemical and mathematical meanings. 

On the other hand, we have presented an alternative formulation of P61ya's theo- 
rem by starting from our USCI approach [22], in which we use a correspondence be- 
tween cyclic subgroups and conjugacy classes as a key concept. Although the original 
discussion on the correspondence has been restricted within perumtation representa- 
tions, it can be easily extended to treat any groups of finite order. The correspondence 
can be combined with the fact that coset representations (and mark tables) are based on 
conjugate subgoups while irreducible representations (and charater tables) are based 
on conjugacy classes. This idea creates a working guideline that dominant representa- 
tions (coset representations for cyclic subgroups) should have a crutial role to arrive 
at the goal. The present paper deals with detailed discusstions on the correspondence 
and the proposal of the concept of markaracter (mark-character), which allow us to 
treat marks and characters on a common basis. 

2. Dominant subgroups 

In order to have a brief perspective, Table 1 shows the terminology of the present 
approach on related concepts in comparison with those of the previous approaches. 
We here coin a term markaracter (mark-character) to integrate the terms "mark" and 
"character". The coinage is to clarify the fact that the present approach (markarac- 
ter approach) provides permutation representations and linear representations with a 
common basis. 

Table 1. Terminology for concepts 

Item Mark approach Character approach Markaracter approach 
representation permutation linear linear (permutation) 

representation representation representation 
basic coset irreducible dominant 

representation representation representation representation 
invariant mark character markaracter 
basic invariant mark irreducible character dominant markaracter 
table mark table character t ab l e  markaracter table 
equivalency conjugate conjugacy conjugate cyclic 

class subgroups classes subgroups 

Let G be a group of finite order that has a non-redundant set of cyclic subgroups 
(SCSG): 
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SCSGG = {G1 ,G2 , . . . ,G~}  (IGll < IG21 _< . . .  <_ IG~I), (1) 

where the group Gl is an identity and each subgroup is a representative selected from 
a respective set of conjugate cyclic subgroups. A group contained in the SCSG ic 
called a dominant subgroup. Note that the group G itself is not always a cyclic group. 

We consider a coset representation (CR) by starting from a coset decomposition 
of the group G by each cyclic subgroup Gi. The symbol G ( / G 0  is used in accord 
with our previous treatment. The CR, which is called a dominant representation (DR), 
may be written as permutation forms or as matrix representations• Thereby, we have 
a non-redundant set of dominant representations (SDR): 

SDRG = {G(/G~), G(/G2), • . . ,  G(/G~)}. (2) 

The degree of each DR is representated by IGI/IG~I for i = 1, 2 , . . . ,  s. Note that the 
DRs in SDRG are concerned with cyclic subgroups and selected from the correspond- 
ing non-redundunt set of CRs (SCRG) concerning cyclic and non-cyclic subgroups• 
Each DR of SDRG (G( /G0)  corresponds to a dominant markaracter that is a row 
vector whose elements are the number of fixed points when the DR is restricted 
within respective dominant subgroups. In the treatment of this section, the markar- 
acter is identical with a fixed-point vector (FPV) described in our previous work 
[18] except that this is concerned with the SCR. Thus, a dominant markaracter is 
represented by 

G ( / G 0  = ( r a i l , m i 2 , . . . , m ~ i , . . . , m ~ s )  

= ( m i l , m ~ 2 , . . . , r a ~ i , 0 , . . . , 0 )  f o r i = l , 2 , . . . , s  (3) 

which is uniquely determined once the S D I ~  is selected. We use the slanted bold- 
faced symbol G( /Gi )  for designate such a markaracter. Each element of an FPV is 
the number of fixed points which is called a mark. On the other hand, each element of 
a markaracter is concerned with an invariant which includes a mark as a subconcept. 
Hence, the term "mark" is also used in the present paper although it involved an 
extended meaning• 

Such dominant markaracters are collected to form a dominant markaracter table, 
which is simply called a markaracter table (MT). This is a lower triangular matrix 
as follows• 

,~G1 ~,G2 " "  IG~  "'" ,[Gs 

G(/G1) mll / 
G(/G2) m21 m22 

• . . ,.. 
i~IG = (mij) = G( /Gi)  rail mi2 . . .  mii , (4) 

G(/G~) m~l m~2 . . .  ra~i - . .  ms~ 

where zero elements above the main diagonal are omitted• A roman-character symbol 
with a tilde (e.g. 1VIG) is used to designate such a markaracter table, when it is regarded 
as a square matrix. 

Table 2 shows a markaracter table for the group Td. Note that the group Td has 
a non-redundant set of dominant representations (SDR): 

SDRT d = {Td(/C1), Ta(/C2), Td(/Cs), Td(/C3), Td(/S4)}. (5) 
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The table is regarded as a matrix, which is designated by the symbol l~Td. The 
corresponding inverse matrix (Table 3) is also used in the present treatment. 

Table 2. Dominant mark table for T d 

MT4 Ct C2 Cs C3 84 
Td(/CI) 24 0 0 0 0 
Td(/C2) 12 4 0 0 0 
Td(/Cs) 12 0 2 0 0 
Td(/C3) 8 0 0 2 0 
Td(/S4) 6 2 0 0 2 

Table 3. Inverse matrix of the dominant markaracter table for T 
N - -  1 
M T  d 

E l  

C2 
Cs 
C3 
S4 

T d ( / C 1 )  T d ( / C 2 )  Td(/Cs) T d ( / C 3 )  Td(/S4) 
1 0 0 0 0 

1 1 - g  ~ 0 0 0 
_1 0 1 0 0 

4 2 
1 0 0 1 0 

0 -¼ 0 0 

s u m  

1 

1 g 
! 
4 
1 

1 

The set of  the dominant markaracters (G( /Gi )  for / = 1 , 2 , . . . , s )  is linearly 
independent and spans a vector space (V), which is called a markaracter space. Let 
consider a row vector involved in V: 

X = (z, ,  z2, • • •, xs). (6) 

This vector can be generated by counting fixed points for each cyclic subgroup when 
the group G acts on an object, giving a permutation representation. The vector X is 
represented by a linear combination of  the vectors G( /Gi )  ( / =  1 , 2 , . . . ,  s) given by 
eq. 3. We thus obtain the following equation, 

8 

X = ~1G( /G, )  + ~2G(/G2) + . . .  ~ G ( / G ~ )  = Z ~ iG( /Gi ) .  (7) 
i=l 

The coefficients are easily obtained by solving linear equations, 

xj = ~ ~m~j (3" = 1,2,..., s). (8) 
i=1 

or inverse linear equations, 

8 

ai  = ~ x i ~ j i  (i = 1, 2 , . . . ,  s). (9) 
j=l 

These equations are summarized by the following theorem using matrix representa- 
tions. 
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Theorem 1. By defining a row vector, 

~k ---- (~1, ~ 2 , . ' . ,  ~/s), (10) 

the linear equations can be written as the following matrix expression: 

X = AMG, (11) 

o r  

~ - 1  
= XM c . (12) 

The vector A is called a multiplicity vector, since it corresponds to the counter- 
part defined in our previous treatment [18]. When A is generated from a dominant 
markaracter G ( / G 0  (for a cyclic Gd, we call them a dominant multiplicity vector 
and use the slanted boldfaced symbol with a wide tilde C;(/Gi) for designating them. 
Obviously, the multiplicity vectors C,(/Gi) (i = 1 ,2 , . . . ,  s) construct an orthonormal 
basis system. 

It should be noted that multiplicity vectors of the present approach may contain 
elements of rational number, while previous multiplicity vectors contain elements of 
non-negative integer. This feature is illustrated in the following example. 

Example 1. Let us consider a methane (or tetrahedron) skeleton. The four hydro- 
gen atoms (vertices) construct an orbit governed by Td(/C3~). Since the dominant 
markaracter is Td(/C3~) = (4, 0, 2, 1,0), eq. 12 for this case is obtained as follows. 

1 1 
'i'd(/C3~) = (4,0,2, 1,0)IVIT2 = (--7,0,  1, 7,0).  (13) 

On the other hand, the six edges construct an orbit governed by Ta(/C2v). Since the 
dominant markaracter is Ta(/C2v) = (6, 2, 2, 0, 0), eq. 12 for this case is obtained as 
follows. 

1 1 
Td(/C2v) = (6, 2, 2, 0, 0)l~IT2 = (--7 '  2 '  1,0, 0). (14) 

Such symbols with a tilde are used to designate multiplicity vectors in the present 
paper. In a similar way, markaracters and multiplicity vectors are obtained for all of 
the coset representations of the group Td, as collected in Table 4. [] 

Since a mark table for Td has been reported [18], a more convenient procedure 
is available. From the mark table, we select the columns corresponding to the cyclic 
subgroups of Td, giving a restricted mark table shown in the left part of Table 4, 
where the marks of each row are collected as a row vector (a markaracter) and the 
rows corresponding to the cyclic subgroups are shifted into the top of the table. 

This example shows that the markaracter of each coset representation is trans- 
formed into a multiplicity vector based on the dominant multiplicity vectors (i 'd(/Ca) 
to I"d(/$4)). In other words, it is represented by a linear combination of ~rd(/C1) to 
'rd(/S4) as the orthonormal bases of the markaracter space. 
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Table 4. Restricted mark table and mulitiplicity vectors for T d 

Markaracter Multiplicity Vector 
Td(/C1) = (24, 0, 0, 0, 0) 
Td(/C2) = (12, 4, 0, 0, 0) 
Td(/Cs) = (12, 0, 2, 0, 0) 
Td(/C3) = (8, 0, 0, 2, 0) 
Td(/S4) = (6, 2, 0, 0, 2) 

Td(/C2v) = (6, 2, 2, 0, 0) 
Td(/D2) = (6, 6, 0, 0, 0) 
Td(/C3v) = (4, 0, 2, 1,0) 
Td(/D2 d) = (3, 3, 1, 0, 1) 

Td(/T) = (2, 2, 0, 2, 0) 
Td(/Td) = (t, 1, 1, 1, 1) 

= : :>  Td(/C1) = (1,0, 0, 0,0) 
Td( /C2)  = (0, 1,0, 0, 0) 

==¢'- Td(/Ca) = (0, O, 1, O, O) 
Td(/C3) = (0, 0, 0, 1, 0) 

==~ Td(/S4) = (0, 0, 0, 0, 1) 
 d(/c2v) : ( @  ½,1,o,o) 

=:~ Td(/D2) = ( _ l ,  ~,0,0, 0) 
=:ez "Td(/C3v) = (--1,0,  1, ½,0) 

1 1 1 ==~ Td(/D2d) = ( ' -  1 ~' 2'  O, ~) 
Td(/T) = (_1 ,  ½,0, 1,0) 

½, 

3. Elements of markaracter tables 

Each element of a markaracter table is called a mark in the present approach. The 
term "mark" involves the term "mark" of the previous mark approach [18] and the 
term "trace" of the character approach under appropriate conditions. Such usage may 
provide no confusion. 

Marks can be evaluated by making a coset representation from a multiplication 
table of a group at issue. This method is essentially equivalent to the method described 
in Chapter 5 of Ref. [ 18] for treating usual mark tables. The purpose of this section 
is to consider the meaning of each value appearing in such a markaracter table. 

Theorem 2. Let G be a group of finite order. Suppose that Gi and Gj are cyclic 
subgroups of G and that Gj and its conjugate groups are not the subgroup of Gi 
satisfying IGj] _< IGi]. Then, the mark for G(/Gi )  J, Gj is equal to zero, i.e., mij = 0 

Proof Let us consider a coset decomposition, 

G = Girl + Git2 + . .-  + G~tr, (15) 

where tl = / (itentity). Assume that a coset G i t k  is fixed on the action of V9(E Gj). 
Since the stabilizer of G~tk is t~lG~tk, we have 9 E t-~lGitk. This allows us to select 

39~(E G 0  to satisfy g = tklffitk, or inversely 9~ = tkgtk 1. Since 9 moves over Gj, 
we obtain 

t k l G j t k  = {9i}  C G~ (16) 

This contradicts the assumption. Any representative ta can be selected from the 
transversal associated with the coset decomposition. Hence, such fixed points (cosets) 
are absent. In other words, the mark for G( /Gi )  + Gj  is equal to zero, i.e., mij  = 0 

[] 
The following theorem gives the diagonal entries of a markaracter table. This 

theorem also holds for a non-cyclic subgroup. 

Theorem 3. Let Gi be a cyclic subgroup of G of finite o'rder. Then, the mark for 
G(/Gi )  1 Gi (raii) is represented as follows. 
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ING(Gi)I 
m i i -  [Gil ' (17) 

where NG(Gi) is the normalizer of Gi within the group G. 

Proof Let us consider a coset representation of the normalizer Nc(Gi )  by Gi. 

NG(Gi) = Girl  + Git2 + - . .  + Gi r t ,  (18) 

where tl = I and r is equal to the number of  the conjugate subgroups of Gi within 
G, i.e., 

ING(Gi)I 
r - - -  (19) 

By using eq. 18, a coset decomposition of G by Gi can be written as follows, 

Ca = NG(Gi)sl  +NG(Gi)s2  + . . -  +NG(Gi) tp  

---- GiSll + Gi821 + - • • + GiSrl 

+ Gis12 + Gis22 + . . .  + Gist2 + . . .  (20) 

where s~ = I ,  ske = tkse and 

IGI 
p -  ING(Gi)I (21) 

The following cosets appearing in eq. 20, 

GiSl l (= Gir l ) ,  Gis2t(= G i t 2 ) , . . . ,  GiSrl( = Gir t ) ,  (22) 

are respectively fixed by 

S~l 1GiSll = s211 Gi821 . . . . .  Srl I Gist1(= Gi). (23) 

These are identical with Gi, since the cosets represented by eq. 22 appears in the 
coset representation (eq. 18) and N c ( G i )  is the normalizer of  Gi.  This means that the 
cosets (eq. 22) are fixed under the action of g E Gi. Moreover,  g can be proved not 
to fix the remaining cosets appearing in eq. 20, whose stabilizers are the respective 
subgroups conjugate to Gi. Hence, eq. 17 is equal to the mark mii of G ( / G i )  I Gi,  
i.e., 

ING(Gi)I (24) 
m i d = r =  I Gil 

[] 

T h e o r e m  4. Let Gj be a cyclic subgroup of Gi, which is in turn a cyclic subgroup of 
G offinite order. 

1. The cyclic group Gi contains only one cyclic subgroup whose order is equal to a 
divisor of IGil. 

2. The nomatizer NG(Gj)  is identical with the normalizer NG(Gi). 

Proof 

1. Abbreviated. 
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2. Assume that g-lGjg ~ Gj for 3g C NG(G0. Obviously, we have 9 ¢ Gj. 
Moreover, the preceding proposition indicates that 9 ¢ Gi. This means that, in 
NG(G0, Gi containing Gj is distinct but conjugate to g-lGig containing 9-1Gj9, 
i.e. 9-1Gi9 5/Gi.  This contradicts the assumption that g is an element of the 
normalizer N6(Gi). [] 

Theorem 5. Let Gj be a cyclic subgroup of Gi, which is in turn a cyclic subgroup of G 
of finite order. Then, the mark for G(/Gi)  + Gj (mij) is equal to that for G(/Gi)  ,~ Gi 
(raiO, which is represented as follows. 

]NG(GOI 
m~j = m .  - I G~I ' (25) 

where NG(G0 is the normalizer of Gi within the group G. 

Proof Since Gi and Gi have the common normalizer NG(Gi), the equation, t-~lG~tk = 
Gi .~ '.. t-klGjtk = Gj, holds true for any tk of eq. 18. This means that the mark for 
G(/Gi)  ~. Gj (mij) is equal to that for G( /Gi)  1 Gi (mi0. Note that t~-lGitk is only 
one cyclic subgroup of t~lGjtk whose order is equal to IGjl. Hence, eq. 17 gives 
eq. 25 to be proved. [] 

We easily obtain the following theorem that is concerned with an identity group 
GI (= Cl). 

Theorem 6. Let Gi be a cyclic subgroup of G of finite order. Then, the mark for 
G(/Gi)  ,L G1 (mil) is represented by 

fGI 
rail = iGi[. (26) 

In the light of Theorems 2-6, the elements of a dominant markaracter (eq. 3) 
are evaluated, giving a markaracter table. The following equation is derived from 
Theorem 3 and 6, 

m~l IGI [Gil [GI 
× (27) 

mii IGi[ ING(Gi)I ]NG(G0] ' 

which is equal to the number of subgroups conjugate to Gi within the group G. 

4. Modified mark tables vs. markaracter tables 

The purpose of this section is to show that the elements of a dominant markaracter 
table appear in the corresponding mark table and that the elements of its inverse also 
appear in the inverse of the mark table. 

First, we define a concurrent interchange of an inverse pair (a matrix and its 
inverse) as an operation that involves interchange between the i-th row and the j -  
th row and between the i-th column and the j-th column for the matrix as well as 
simultaneous interchange between the i-th row and the j-th row and between the i-th 
column and the j-th column for the inverse matrix. Obviously, a pair of a matrix and 
its inverse is also an inverse pair after such concurrent interchanges. 

Let us then consider concurrent interchanges of an inverse pair of a mark table 
MG and its inverse MG 1. We shall prove that the pair of Mc and M~ 1 remains a 
pair of lower triangular matrices after concurrent interchanges. For this purpose, we 
have a theorem concerning zero elements in a mark table. 
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T h e o r e m  7. Let G be a group of finite order. Suppose that Gi is a cyclic subgroup of G 
and that Gj is a non-cyclic subgroup ofG(Gi < Gj). Then, the mark for G( /Gi )  .[ Gj  
is equal to zero. 

Proof Let us consider a coset representation represented by eq. 15. Assume that a 
coset Gitk is fixed on the action of  Vg(E Gj).  Since the stabilizer of  Gitk is t~tG#k, 
we have 9 c t-~lGitk. Since 9 moves over Gj ,  we obtain 

Gj C t~lGitk. (28) 

Since Gi is cyclic, its conjugate subgroup t~lGitk also cyclic. Hence, eq. 28 indicates 
that Gj  should be cyclic, because a subgroup of a cyclic group is also cyclic in 
general. This contradicts the assumption. Any representative tk can be selected from 
the transversal associated with the coset decomposition. It follows that such fixed 
points (cosets) are absent. Namely, the mark for G ( / G 0  ~ Gj  is equal to zero. [] 

Theorem 7 allows us to carry out consecutive concurrent interchanges of  a pair of  
a mark table MG and its inverse MG 1 so that the resulting matrices (a modified mark 
table and its inverse) are also lower triangular matrices, where the elements corre- 
sponding to cyclic subgroups are gathered into the upperleft parts of  the respective 
matrices. The parts are selected to be a dominant markaracter table and its inverse, 
since any upperleft square of  a lower triangular matrix is inverse to the corresponding 
part of its inverse matrix. 

In accord with the consecutive concurrent interchanges, the corresponding SCRG 
is transformed into a modified set of coset representations (MSCR), 

M S C P ~  = {G(/G1),  G ( / G 2 ) , . . . ,  G( /Gs) ,  G ( / G s + , ) , . . . ,  G( /Gt)} ,  (29) 

where the CRs G( /G i )  for i = 1 to s are identical with those of S D I ~  (eq. 2) and 
the remaining CRs are concerned with non-cyclic subgroups of  G. 

For illustrating this treatment, Tables 5 and 6 show a modified mark table and 
its inverse that are generated by the concurrent interchanges of  the mark table for 
D3h [18]. The upperleft squares (a markaracter table and its inverse for D3h) are 
respectively designated by dividing with a vertical and a horizontal line. Note that the 
original position of  the row D3h(/C3h ) is between the rows D3h(/C3v ) and D3h(/D3) 
in the mark tablereported in Appendix A.2 of  Ref. [18]. 

Table 5. Modified mark table for D3h 

MD~. h 
D3h(/C1) 
D3h(/C2) 
D3h(/Cs) 
D3h(/Cts) 
D3h(/C3) 

D3h(/C3h) 
D3h (/ C 2v ) 
D3h (/ C 3v ) 
D3h(/D3) 

D3h (/D3h ) 

El C2 C, C~ C3 
12 0 0 0 0 
6 2 0 0 0 
6 0 2 0 0 
6 0 0 6 0 
4 0 0 0 4 
2 0 0 2 2 
3 1 1 3 0 
2 0 2 0 2 
2 2 0 0 2 
1 1 1 1 1 

C3h C2v 
0 0 
0 0 
0 0 
0 0 
0 0 
2 0 
0 1 
0 0 
0 0 
1 1 

C3v D3 D3h 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
2 " 0 0 
0 2 0 
1 1 1 
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Table 6. 

/~-1 
D3h D3h D3h 

(/C1) (/C2) 

C1 

C2 

C~ 

c' 
C3 

C3h 

C2v 

C3v 

D3 

D3h 

1 0 i i  
1 1 
4 
1 -~. 0 

1 0 
12 

- ~  o 
± 0 12 

1 1 t 1 

1 _½ ~ o o 
1 l 0 0 
4 2 
1 l 1 1 

Inverse matrix of the modified mark table 

D3h D3h D3h D3h 

( /Cs)  (/Cts) ( /C  3) (/C3h) 

0 0 0 0 

0 0 0 0 

0 0 0 

0 ~ 0 0 

0 0 ~ 0 
l 1 1 

0 6 4 

0 0 
1 0 
4 
t 0 4 
! 1 
2 2 

for D3h 

D3h D3h D3h D3h 

(/C2v) (/C3v) (/D3) (/D3h) sum 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 ~ 0 0 
1 0 0 ~ 0 

- 1  1 t 1 
2 2 

1 

! 
4 
! 
4 

l 
12 
! 
6 
1 

5 .  M a r k a r a c t e r  t a b l e s  a n d  c o n j u g a c y  c l a s s e s  

The purpose of  this section is to indicate that markaracter  tables proposed in the 
present  paper are closely related to character tables. This  requires the relat ionship 
between conjugate  cyclic subgroups and conjugacy classes. 

T h e o r e m  8. Let G be a group offinite order. Select an element g (c  G) as a generator 
and construct a cyclic group (g), 

G~ = (g) = {g, g L . . . ,  9 L . . . ,  gn(= X)}. (30) 

1. Let r be a divisor o f  n satifying 1 < r < n. Then the cyclic group (9 r) generated 
by 9 r is a subgroup o f  Gi (Case 1). 

2. Let r and n be coprime, satifying 1 < r < n. Then the cyclic group (9 r) generated 
by 9 r is identical with G~ (Case 2). 

3. Whether 9 r belongs to Case 1 or 2, the inverse element 9 -1 generates the same 
group as (9r). 

Proof  

1. We have n = m r  where m is a posit ive integer. Hence  the group at issue, 

(9 ~) = {9~,92~ . . .  ,gk~ . . .  ,gm~(:  i ) } ,  (31) 

satisfies gmr = gn = f .  This means  that the group (9 ~) is a cyclic group of  order 
m.  Since the elements  of  (9 r) are involved in (9), the group (9 ~) is a subgroup 
of (g). 

2. Since n and r are coprime, the number  nr  is the least c o m m o n  mult iple.  Hence  
the group at issue, 

(9 ~) = {9 ", 9 2 ~ , . . . ,  9 k ~ , . . . ,  9n r (=  I )} ,  (32) 

satisfies 9 n~ = (9'~) ~ = I .  Suppose that an integer k satisfies 1 < k < n and 
9 k~ = I .  This means  that kr  is a mul t iple  of  n because 9 n = I .  Since r and n are 
coprime, k should be a mult iple  of  n.  The presumption 1 < k _< n provides the 
equality n = r .  Thus, the groups (9} and (9 ~) have the same order and conta in  a 
common  element  9 r. Hence,  they are concluded to be identical. 
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3. Since we have g-nr  = (gn)-r  = I and gkrg-k,- = I, the group (g-r):  

(g-r)  = {g-r ,  9-2r , . . . ,  g - k r , . . . ,  g,~r(= i)} (33) 

is identical with (gr) for Case 2. Case 1 can be similarly proved. [] 

The proof of Theorem 8 is essetially equivalent to the procedure described for Lemma 
2 in Ref. [22], though the latter has been concerned with concrete cycle structures. 

It should be noted that g~ and g - r  contained in a cyclic group G belong to 
different conjugacy classes but they belong to the same subgroup (gr) (= (9-r)) ,  
where each element of the cyclic group G constructs a conjugacy class. Thus, there 
are cases in which two (or more) conjugacy classes correspond to a cyclic subgroup 
G~ as well as cases in which they correspond to each other in one-to-one fashion. In 
order to treat these cases, we define a dominant class as a disjoint set of conjugacy 
classes that correspond to the same dominant subgroup. 

Theorem 9. Suppose that the cyclic subgroup Gi defined in Theorem. 8 involves an 
SCSG: 

s~(i) ~-(~) , G~ ~)} (34) SCSGc~ = t'-'l ,"-'2 ' ' ' "  

(IGOr) I < IG~)[ _<. . .  _< IG~)I), (35) 

Let N be the number of elements contained in a dominant class K which is concerned 
/ i t -  1 G( i )  with the subgroup Gi. These elements are involved in Gi - ~e=l e , where the group 

corresponding to g = t is excluded because Gi = G~ t). 

t--1 

N = IGi - U G(e°I = ~(IGi])' (36) 
g=l 

where ~(IGil) represents Euler's function for interger I Gil. 

Proof The elements of Gi are classified into either one of the cases described above. 
The elements of Case 1 are involved in l i t - l  G ( i )  ~e=l e , since the cyclic group Gi contains 
only one subgroup whose order is equal to each divisor of IGd. Hence the elements 

~(i) It follows that of Case 2 are concluded to belong to the set Gi - U~__-i I " e  • 

t--I 

N = IG~ - [,.J G~')! =  (IGd), 
e=l 

(37) 

[] 

Theorem 10. Let G be a group of finite order and K' a conjugacy class of G. Select 
elements 91 and 9z (E K t) as generators and construct cyclic groups (91) and (92). 
Then (91 } and (gz} are conjugate in the group G. 

Proof Let us consider (9~) = Gi generated by gl (E KI): 

Gi -~ (gl) = { 9 1 , 9 2 . . . ,  9~ , . . . ,  9~(= i )} (38) 

Since the elements 91 and g2 are conjugate, we can write g2 = 9-1919(g E G). 
Thereby, we have 
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g~ = g - - l  g l g  . g - l  g l g  . . . g - l  g l g m  g - l  g ~ g ,  
Y 
r 

(39) 

wherein r = 1 , 2 , . . .  , n  and g5 = g-19~9 = 1. It follows that the group, 

G j  = (g2) {g2,g~, . . , g ~ , . . .  n _ = • , g2 ( -  I )}  = g- lGig ,  (40) 

is conjugate to G. [] 
Let us consider a case, Gj  = g-lG~g = Gi, in eq. 40 as a special one. This 

means that an appropriate g~ appearing in eq. 38 is equal to g2 (E Gj) .  This selection 
corresponds to the case 2 of Theorem 8. This discussion can be summarized as a 
corollary. 

Corol la ry  1. In Theorem 10, let g2 be an element of (gl), i.e., g2 = g~. Then IG~I 
(= I(gl)l) and r are coprime. 

Since any representative is selected from conjugate subgroups in the present ap- 
proach, Theorem 10 permits us to select a representative cyclic subgroup Gi that 
corresponds to a conjugacy class K ' ,  more precisely to a dominant class containing 
K' .  The subgroup Gi is definitely determined when conjugate subgroups are regarded 
as being equivalent. 

T h e o r e m  11. Let Gi be a representative cyclic subgroup corresponding to a dominant 
class K of G. The number (nK) of the elements contained in the class K is represented 
by 

IGI~(IG~I) (41) 
n K -  ING(GOI ' 

wherein NG(Gi) is the normalizer of  Gi within the group G. 

Proof. In the light of Theorem 10, the element of  K can be classified into m conjugated 
subgroups, 

Gi, g21Gig2, g31Gig3, . - . ,  gm lGigm, (42) 

where each subgroup contains the same number of  elements of K. Since Theorem 8 
gives the number N for each of the conjugate subgroups, we have 

N m  = n K .  (43) 

On the other hand, the number m is evaluated by the equation, 

Equations 43 and 44 yield 

m - I G ~  (44) 
ING(Gi)l 

n K = N m  = IGl~(IGil) (45) 
ING(Gi)I " 

[] 
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Theorem 12. Suppose that a cyclic group G of finite order is divided into a set of s 
dominant classes, 

Kl, K2,. • •, Ks (46) 

and that the corresponding cyclic subgroups construct an an SCSG: 

~CSGG = {G1,G2,--. ,Gs} (IGll ~ IG2I ~ ' - -  ~ IGsl), (47) 

Then we have 

i:1 ING(Gdl 
= 1. (48) 

Proof By using Theorem 11, the number of elements contained in Ki is represented 
by 

IGI~(IGd) 
n K i -  [NG(Gdl " (49) 

These are summed up over all of the conjugacy classes, giving the order of G, i.e., 

s ~ IGI~(IGil) 
IGI : ~ n K ,  = ING(Gdl " 

i=1 i=l 

(50) 

When the both sides of the equation are divided by ]G[, we obtain eq. 48 to be 
proved. [] 

6. Orbit indices 

In order to characterize multiplicity vectors defined above, we further introduce orbit 
indices. 

Definition 1. The orbit index of a multiplicity vector is defined by the equation, 

,~ = ~ ~i, (51) 
i=l 

where each ~i is calculated by eq. 7. 

From each ~i appearing in eq. 9, the orbit index is calculated as follows, since two 
summantion processes can be inversed. 

Theorem 13. 

z~ = 5~ = xjmj~ = x~ mj~ (52) 
i=l i=l j=l j=l 

= ~ xy~(IG31) (53) 
j=! ] N G ( G j ) [  " 
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Equation 53 is derived from Theorem 16.2 of the book [18], since the subgroups 
Gj are cyclic, i.e., 

8 

ING(Gj)I (J = 1 , 2 , . . . , s )  (54) 
i=l 

where ~(IGj l) represents Euler's function and N6(Gj)  is the normalizer of Gj  within 
the group G. 

Let us consider M S C R c .  shown in eq. 29. Let a row vector X be a vector of a 
fixed-point vector space which is associated with the modified mark table of G, 

X = ( z l ,  x 2 , . . . ,  xs ,  x ~ + l , . . . ,  xt), (55) 

where the top s elements are equal to those of a vector of a dominant fixed-point 
vector space. Corollary 5.2 (Ref. [18]) described for SCRc ,  can be modified to give 
the total number (,5) of orbits, 

,5 = ~ xj  ~ j i  (56) 
j=l  

Since the modified mark table is generated by the concurrent interchange, we are 
able to obtain the following equation. 

Zi=l mji  for cyclic Gj,  (57a) 

i=1 0 for non-cyclic Gj , (57b) 

where the latter zero value is based on Theorem 16.2 of the book [18]. This result 
allows us to equalize eqs. 52 and 56, i.e., 

,5 = ~ xj mj~ = x~ mj~ = zS (58) 
j=l j=l 

It should be noted that the elements of X (Xs+l to xt  in eq. 55) have no effects on 
the value of A. Hence, we arrive at a simple but important theorem. 

Theorem 14. An orbit index is an invariant during the transformation between a fixed- 
point vector space and a markaracter space, i.e., 

= A (59) 

When a row vector X is selected from a modified mark table of G, the top s elements 
of eq. 55 (xl to xs)  are equal to those for the corresponding dominant markaracter 
table. Since the X is associated with one orbit, we arrive at the following theorem. 

Theorem 15. When a row vector x j  = ~-'~iS=l ~ i m i j  is obtained for  one coset repre- 
sentation G(/Gj) ,  the orbit index is expressed by the following equation. 

= ~i = x j -~ j i  = x j  ~ j i  = `5 = 1, (60) 
i=l i=l j=l  j=l 

where the subgroup Gj  is not always cyclic, but all o f  the subgroups Gi are cyclic. 

The theorem gives a necessary condition for assigning a sum of dominant representa- 
tions (DRs) to a coset representation. It is exemplified by inspection of the multiplicity 
vectors collected in Table 4. 
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7. Subdominant markaracter tables 

We have discussed the consecutive concurrent interchange of a mark table (and its 
inverse) to produce a markaracter table (and its inverse). The operation is based on 
Theorem 7. In the light of the corresponding theorem (Theorem 2), the same procedure 
can be applied to the resulting (dominant) markaracter table (and its inverse), giving 
a subdominant markaracter table (and its inverse)• 

Let G j  be a subgroup of G which is a group of finite order. Note that Gj and G 
are cyclic or non-cyclic• The group Gj has a non-redundant set of cyclic subgroups, 
i.e., 

SCSGGj = {G~ j), G(2J),..., Gr 0)} (61) 

Let us select CRs of G corresponding to the SCSGGj .  They construct a non- 
redundant set of  subdominant representations (SSDR), i.e., 

SSDRG+Gj = {G J. Gj(/G~)), G l Gj(/G20)), . . .  , G J. Gj(/G~))}. (62) 

The CRs contained in the SSDR are called subdominant representations. It should 
be noted that each CR is selected from SDRG. Hence, the degree of each CR is 
representated by IGI/IG~ )1 for k = 1 ,2 , . . . ,  r. 

Each CR of S S D R G  (i.e., G J. Gj(/G~))) corresponds to a subdominant markar- 
acter, the elements of which are selected from the corresponding markaracter table. 
This process is permitted on the basis of Theorem 2. Thus, we have a subdominant 
markaracter, 

G J. (J) .re(J) (J) (J) 03 Gj(/Gk ) . . . .  , m k r )  , m k k ,  ( k l , m k 2 ,  . . .  

= (m (j) m ~j) (J) 0, 0) for k =  1,2,. r, (63) k l '  k 2 ' ' ' ' " D ~ k k  ' " ' ' '  "" 

which is uniquely determined once the S S D P ~  is selected. Note that j is tentatively 
fixed• 

Such subdominant markaracters are collected to form a subdominant markaracter 
table (SDMT), which is lower triangular because of Theorem 2. 

= fm(J)'~ _ MG.I, Gj ', j k ]  - -  

G l Gj(//G~ )) 
G ~ Gj( /G~ )) 

G ~ Gj( /G~ )) 

G ~ Gj( /G~ )) 

G~ ) ~ G~ ) 

re(J) _ (J) tit22 

mb) ~ij) k l  " ° k 2  
• . 

mb) _b) r l  ' t l tr2 

~(J) G~ ) 

. 

re(J) ' ' '  kk 

" •  " r k  

(64) 

where the elements of subdominant markaracter are called marks, omitting zeros 
above the main diagonal• The set of subdominant markaracter defined by eq. 63 
spans a subdominant markaracter space of order r. 

The construction of the subdominant markaracter table corresponds to the eval- 
uation of each mark during [G I Gj(/G~))] I G~ j), where k = 1 , 2 , . . . , r  and 
g = 1 , 2 , . . . , r .  Theorem 2 (concurrent interchanges constructing a subdominant 
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markaracter table from a markaracter table) means that the process can alterna- 
tively be interpreted; thus, we directly consider subduced representations of CRs, 
G( /G kO)) ~ G~ ), after which the elements concerning Gj (i.e. k = 1 , 2 , . . . , r  and 

e = 1 ,2 , . . .  , r)  are gathered. The two notations, [G .L Gj(/G(ff))] J. G(e j) (selection 
and subduction) vs. G(/G~ )) J. Ge 0) (subduction and selection), express the concep- 
tual difference between their procedures, but give the same subdominant markaracter 
table. 

Table 7 shows a subdominant markaracter table for the process Td ~ C3.. Note 
that the process Td J. C3~ corresponds to a a non-redundant set of subdominant 
representations (SSDR): 

SSDRTa~C3v = {Td .L C3v(/Cl), Td .L C3v(/C~), Td J. C3v(/C3)} (65) 

The corresponding inverse matrix (Table 3) is also used in the present treatment. 

Table 7. Subdominant markaracter table for T d ,[ C3v 

MTd~C3v 
Td $ C3v(/C1) 
Td ~ C3v(/Cs) 
Td I C3v(/C3) 

C1 Cs C3 
24 0 0 
12 2 0 
8 0 2 

Table 8. Inverse matrix of the subdominant mMarkaracter table for Td ,[ C3v 

N - I  
MTd.tC3" T d .~ C3v(/C1) T d ~ C3v(/Cs) T d J. C3v(/C3) sum 

1 1 C1 ~ 0 0 
1 1 0 1 

c3 0 

On the other hand, we consider a non-redundant set of dominant representations 
(SDR) for the group G j: 

S D R %  = {Gj (/G~)), Gj (/G~J)),.. . ,  Gj (/G~))}, (66) 

The degree of each CR is representated by IGjl/IG(kJ)l for k = l, 2 , . . . ,  r. 
Table 9 shows a (dominant) markaracter table for the group C3v. Note that the 

group C3v has a a non-redundant set of dominant representations (SDR): 

S D R c 3 v  = {C3v(/CD, C3v(//C~), C3~(/C3)} (67) 

The corresponding inverse matrix (Table 10) is also used in the present treatment. 
The subdominant markaracter represented by eq. 63, i.e., G .L (J) G j ( / G  k ), is con- 

cerned with the CR G(/GkO)). On the other hand, the corresponding dominant markar- 
acter Gj(/G~ j)) is concerned with the CR Gj(/G~)). In the light of Lemma 7.2 and 
eq. 7.11 of Ref. [18], these two CRs are related to each other by the induction, 

Gj( /Gk ~)) T G(/Gy) = G(/Gk~)). (68) 
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Table 9. Markaracter table for C3v 

Mc3v C1 Cs C3 
C3~(/C1) 6 0 0 
C3v(/Cs) 3 1 0 
C3v(/C3) 2 0 2 

Table 10. Inverse matrix of the markaracter table for C3v 

Mc3~ C3v(/C1) C3v(/Cs) C3v(/C3) 
1 C1 ~ 0 0 

1 1 0 Cs - 3  
1 0 1 C 3 ---~ 

sum 

This relationship is represented in the present approach by the following correspon- 
dence: 

Theorem 16. a dominant multiplicity vector, G J. Gj(/G~)), corresponds to G(/GT)), 
while a multiplicty vector, CJj(/G~)), corresponds to Gj(/G~)). In the light of the in- 
duction (eq. 68), we have the following expression. 

~; I Gj(/G(k J)) = C;j(/G~ )) = (0 ,0 , . . .  , 0 , , ~ l  , 0 , . . .  ,0). (69) 

whether fusions occur or not in the process of induction. 

Proof A row vector of the subdominant markaracter table satisfies 

G + Gj(/G~))~G+G~ = ~, + GA/G~ )) -- (0, 0 , . . . ,  0 , , .~1,0 , . . . ,  0). (70) 

On the other hand, the corresponding row vector of the dominant markaracter table 
satisfies 

Gt/G(J)q~-13,/ k , Gj = C'j(/G(k j)) = (0,0, . . . . . .  ,0, 1 ,0, ,0). (71) 

Thus, they give the same unit row vector. [] 
Let us next consider the induction of Gj( /Gj )  to G, i.e., 

Gj( /Gj)  T G(/Gj)  = G(/Gj).  (72) 

Suppose that G(/Gj)  is associated to the following vector, 

=--1 
G $ Gj(/Gj)MGIGj = G ~. Gj ( /Gj )  

= ~ / ~ k  ~" -[ Gj(/G(j)) = (/31,/32,---,/~r)" (73.) 
k=l 
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Then, the corresponding row vector for the subgroup Gj satisfies 

Gj(/Gj)MGj = CJj(/Gj) = ~kGj(/G~ )) ~ (/~1,/~2,'' ',/~v), (74) 
k=l 

where we use Theorem 16 to prove the equality designated with the ]" sign. The CR 
Gj ( /Gj )  corresponds to a vector whose elements are all equal to l, i.e. Gj( /Gj )  = 
(1, 1 , . . . ,  1). Let the vector G ~ Gj(/Gj) be represented by 

G .[ G j ( /G j )  = (yl, Y2,.. . ,  YT). (75) 

Then we have a theorem that provides a basis for preparing a dominant markaracter 
from a markaracter table of the corresponding subgroup. 

Theorem 17. When no fusion concerning Gj occurs in the process of induction, 

Gj( /Gj )  = (1 ,1 , . . . , 1 )M% =(/31,/32,... ,fir) (76) 
~--1  

G J. Gj(/Gj) = (Yl,Yz,...,YT)MGIG j = ( f l l , f l2 , - - - ,~) -  (77) 

Obviously, each element of the multiplicity vector is calculated to be 

/3k = ~ m~2" (78) 
e=l 

These values are obtained by adding the respective columns of the dominant markar- 

actor table, M%. 

Example 2. We now look for a subdominant markaracter Ta + C3v(/C3v) from the 
data, C3v(/C3v ) = (1, 1, 1). Thus  we  have (1) 

-1 61 0 0 1 1 
( I ' I ' I ) M c 3 " o = ( I ' I ' I )  ---~ O1 O½ = ( - ~ , 1 , ~ )  

The resulting vector is multiplied with MTa.[C3 v to give 1(24o0) 
(--7 '  1, ~)MTaLC3v = (--7 '  1, ~) 12 2 0 = (4,2, 1). 

8 0 2 

(79) 

(80) 

Thereom 16 holds also for cases in which fusions occur in the processes of induc- 
tion. Before we prove propositions in general, let us examine an illustrative example. 

Thus, we obtain Td I C3v(/C3v) = ( _ 1 ,  l ,  1)  and Td I C3v(/C3v) -- (4,2, 1). These 

vectors yield Td(/C3v) and Ta(/C3v) by adding zero elements that correspond to C2 
(the 2nd place) and S4 (the last place). Thus, we have Ta(/Cav) = ( -  ~,~ 0, 1, ½,0) and 
Td(/C3v) = (4, 0, 2, 1,0), which are alternatively calculated as shown in Table 4. In 
a similar way, we obtain Td(/C2v) and Ta(/C2~); as well as Td(/T) and Td(/T), 
constructing alternatively Table 4. [] 
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Example 3. A subdominant markaracter is obtained to be Ta l D2(/C1) = (24, 0) and 
~-1  

Td ,L D2(/C2) = (12, 4). They are multiplied by Mx~+D 2 to give 

1 O1 ) (24, 0)MT~sI)~ = (24, 0) "~1 : (1, 0) 
8 4 (1°1) (12,4)I~ITaJ.D2 = (12,4) ~ = (0, 1) 
8 4 

On the other hand, we have 
D2(/C2) = (2, 2), by omitting 

fused dominant markaracters, D2(/C1) = (4, 0) and 
the rows and columns for I C~ and I C~' of Mo2, 

D2(/CI) 
02(/,L C2) 

1VID2 = D2(/,[. e L) 
D2(/,[. C it) 2 

1c~ 1c2 lc~) lc~' 
4 0 0 0 \ 

) 2 2 0 0 
2 0 2 0 
2 0 0 2 

(81) 

We make the inverse of a fused dominant markaracter table, MD~ , by modifying the 
- - 1  

inverse of a dominant markaracter table, MI) 2 . 

N - - I  

MD2 

C1 
1 C2 

c~ 

D2(/C1) D2(C2) D2(C~) D2(C~ l) 
1 0 0 0 ", 4 ) _1 1 0 0 
4 2 
1 0 1 0 
1 0 0 1 

D2(/C1) D2(C2) o) 
1 ~ 

--1~ 1c1( _~¼ 
MD2 = ,L C2 (82) 

where the rows and columns 

markaracters described above 

for ,[ C~ and ~, C~' are omitted. The fused dominant 
-1~ 

are multiplied by Mo~ to give 

=-15 ( 1 0 ) = ( 1 , 0 )  
(4, 0)MD2 = (4, 0) 41 1 

4 2 

(2,2)MDa =(2,2)  ~1 ? =(0,1)  

Thus, Theorem 16 holds for such a case that fusions occur. 

In contrast to Theorem 16, Theorem 17 should be modified in order to treat cases 
in which there occur fusions. Theorem 17 can easily be extended to these cases, since 
the contribution of respective fusions is linearly independent. Thus, we have Thereom 
18. 
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T h e o r e m  18. When there occur fusions concerning G~ ) in the process of induction, 

( 1 , 1 , . . . , , ~ , . . . , 1 ) M G j  = (31,32,...,flr) (83) 

N.~--I 

(Yl,Y2,...,Yr)MG~G~ = (f l l , f l2 , ' ' ' , f l r )"  (84) 

A vector such as (1, 1 , . . . ,  r e , . . . ,  1) is called a fused dominant markaracter. The 
integer rn is the number of fused subgroups. 

We examine two typical cases as examples, in which two or three subgroups are 
fused into one subgroup. First we consider a subdominant markaracter Ta ~ D2(/D2) 
in which three subgroups are fused into one subgroup. 

Example 4. From a row vector, D2(/D2) = (1, 1, 1, 1), we can construct a fused dom- 

inant markaracter, Dz(/D2) t = (1,3), by adding the values corresponding to C2 and 
C~', since these are fused in the process of the induction, D2 Y Ta. Thus we have 

(1,3)MD2 =(1,3)  ~1 ? = ( - - ~ , ~ ) ,  (85) 
4 2 

The resulting vector is multiplied with MT2+o~ to give 

1 3 /~  I 1 3 ( 2 4  0 )  
(-2'-  2) Td~D2 = ( - -  , 2) 12 4 = (6,6). (86) 

Thus, we obtain Ta J. D2(/D2) = (-½, 3) and Ta I D2(/D2) = (6, 6). These vectors 

yield Ta(/D2) and 1"a(/D2) by adding zero elements that correspond to Cs (the 
3rd place), C3 (the 4th place) and $4 (the last place). Thus, we have Ta(/D2) = 
(_½, 3 0,0,0) and T2a(/D2)= (6,6,0,0,0), which are alternatively calculated as 

shown in Table 4. In a similar way, we obtain Ta(/D2a) and Ta(/D2a), constructing 
alternatively Table 4. [] 

Next we consider a subdominant markaracter Dza ~ D2(/D2) in which two sub- 
groups are fused into one subgroup. 

Example 5. From a row vector, Dz(/D2) = (1, 1, 1, 1), we can construct a fused dom- 
inant markaracter, D2(/D2)* = (1, 1,2), by adding the values corresponding to C~ and 
C~', since these are fused in the process of the induction, D2 T D2a. We make the 

inverse of a fused dominant markaracter table, Mn2 , by modifying the inverse of a 
N - 1  

dominant markaracter table, Mo2, 

D2(/C1) D2(C2) D2(C,~) 

( ) -1 1~1-1. $ C1 ~1 0 0 
1 0 Mo2 ~ Ih = .LC2 - ~  ~ 

1 0 1 
(87) 

where the row of ,L C~' is omitted. Thus we have 
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1 0 0 )  
- - 1 .  4 1 1 

(1,1 2)Mo2 =(1 ,1 ,2 )  ~ ~ - 1), o (88) 

The resulting vector is multiplied by MD2alo2 to give (800) 
1 1 1)lVlo2d~o2 1 1 1) 4 4 0 =(2 ,2 ,2) .  

( - 2 ' 2 '  : ( - 2 ' 2 '  4 0 2 
(89) 

Thus, we obtain O2d J, D2(/D2) 1 1 = ( - 7 ,  7, 1) and D2d J, D2(/D2) = (2,2,2). These 
vectors yield DZd(/D2) and DZd(/D2) by adding zero values that correspond to Cs 
(the 3rd place) and S 4 (the last place). Thus, we have DZd(/D2) 1 1 = ( - 7 ,  7, 1,0, 0) and 
D2d(/D2) = (2, 2, 2, 0, 0). 1:3 

8. Characters as markaracters  

Throughout this section, we discuss a special case in which any cojugacy class cor- 
responds to a dominant subgroup in one-to-one fashion. That is to say, any dominant 
class contains only one cojugacy class. For characterizing the special case, we have 
the following theorem, 

Theorem 19. Let G~ be a representative cyclic subgroup corresponding to a conjugacy 
class K ~ of G in one-to-one fashion. The character for G(/Gi)  uder the action of 
g(E K ~) is equal to the dominant markaracter uder the action of (g)(= Gj). 

Proof Let us consider the coset decomposition represented by eq. 15. Consider that 
g(C K') fixes a coset Gitk. It follows that g = tklhtk (for h E Gi and h E K'). 

gr = t ~ l h t k . t ~ l h t k . . . t ~ l h t ~ =  t~lhrtk,  
v 

r 

(90) 

wherein r = 1 ,2 , . . .  ,n  and g n = t-~lhntk = I. It follows that (g) = tk lGi tk  • This 
means that (g) fixes the coset Gitk. [] 

Theorem 19 indicates that the present markaracter tables are closely related to 
character tables for coset representations described previously by us [21]. Thus, The- 
orem 19 allows us to regard markaracters as characters, since each dominant subgroup 
corresponds to a conjugacy class. Thus, we have reported the reduction of a coset 
representation into irreducible representations [21]. Note that dominant markaracters 
span a vector space and irreducible characters span another vector space. However, 
they can be equalized, since the two vector spaces contain in common a vector whose 
elements are all equal to 1. It follows that we can inversely regard characters as 
markaracters. The following example illustrates such an inverse point of view. 

N--1 
Example 6. The character table for Td is multiplied by MTa to afford a set of multi- 
plicity vectors. 
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~. Cl ,LC2 ~. Cs ~ C3 .[ 84 
A 1 ( 1  1 1 1 1 / 
A2 1 1 -1 1 -1  - - t  
E 2 2 0 - 1 0 MTa 
TI 3 - 1  - 1  0 1 
T2 3 - 1  1 0 - 1  

,L C1 ,L C2 ,L Cs ,L C3 ,L 84 

1 _ !  t 
-,~2 2 2 

1 _ 1  (91) = .]~ 0 ~ 0 2 
1 1 1 0 1 

1 0 T2 0 0 ~ --~ 

The sum of each row of the resulting matrix (except the Al-row) is calculated to be 
zero. 

The orthogonality relationship between two irreducible characters Fa(Kj)  and 
Fb(Kj) is represented by 

1 s 
E nKj Fa(Kj)I'b(Kj) = tSab (92) 

IGI j=l 

where ~ab is Kronecker's delta. It should be noted that the orthogonality of irreducible 
characters is concerned with each element of the group so that each term of eq. 92 
concerning a conjugacy class involves the coefficient nKj/IGI. By means of Theorem 
1 l, the left-hand side of eq. 92 is transformed into an equation concerning G, 

1 ~ , ~ I ) F a ( K j ) F b ( K j )  = ~ g~(lGj[) Fa(Gj)Fb(Gj) ' (93) 
T-~ j=l i 6~ jJi j=l ING(GJ)[ 

where the summation over Kj is changed into the summation over Gj. This change 
agrees with the present treatment in which a character is regarded as a markaracter. 
We now arrive at a theorem which crorresponds to the orthogonality relationship of 
irreducible characters, 

T h e o r e m  20. When two row vectors F~(Gj) and Fb(Gj) are obtained for irreducible 
characters, we have 

~ ~(IG~I) ra ,G. , rb ,o  , 
3=1 I ~ 1  t 3) t tJ j )  = 6ab. (94) 

When we have Fb(Kj) = (1, 1 , . . . ,  1) as a special case, this equation is transformed 
into 

-~ Fa(G~)~(IGj]) = 0, (95) 
j=l ING(Gj)I 

for _Fa(Kj) other than (1, 1 , . . . ,  1). The left-hand side is equal to the orbit index 
described in Theorem 13. Thus, we have a theorem for classifying a multiplicity 
vector. 
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T h e o r e m  21. When a row vector F ( G j )  is obtained for an irreducible character other 
than (1, 1 , . . . ,  1), the orbit index is expressed by the following equation. 

F(Gj )~ ( tG j  - 0. (96) I) 
zA = [NG(Gj)I 

j=l 

Markaracters can alternatively be considered to be generalized characters in the 
present case. The difference of two markaracters having the orbit index of  one creates 
a markaracter having the orbit index of zero, which is a candidate for an irreducible 
character. 

Example 7. From the data of Table 4, we obtain irreducible characters as follows. 

T a ( / T ) -  Td(/Ta) = ( 2 , 2 , 0 , 2 , 0 ) -  (1, 1, 1, 1, 1) = (1, 1 , - 1 ,  1 , - 1 )  = A2 

Td(/nad) -- Td(/Td) = (3, 3, 1,0, 1) -- (1, 1, 1, 1, l) = (2, 2, 0, --1,0) = E 

Td(/C3~) - Td(/Td) = (4, 0, 2, 1,0) -- (1, l, 1, 1, 1) = (3, --1, 1,0, --1) = T2 

Td(/S4) - Td(/D2a) = (6 ,2 ,0 ,0 ,2 )  - (3,3, 1,0, 1) = ( 3 , - 1 , - 1 , 0 ,  1) = T1 

The corresponding multiplicity vectors are calculated also from the data of Table 4 
as shown, 

1 1 1 0 1  1 1 
T d ( / T ) -  Td(/Td) = ( - -7 '  7 ,0, 1 ,0) - -  ( - -7 '  ' 2 ' 2 '  7 ) 

1 1 1 1 
= ( 0 ' 2 '  2 ' 2 '  ~ ) = - 4 2  

1 1 1 1 1 1 1 1 
Td(/D2d) -- Td(/Td) = ( 2 '  2 '  2 ,0, 7 ) - ( - 7  ,0, 2 '  2 '  7 ) 

1 1 
: : 

1 1 1 1 1 1 
]'d(/C3~) -- ~Fd(/Td) = (---~,0, 1, 7,0)  -- (--z 'O' 2' 2'  2) 

1 1 
= ( o , o ,  : 

1 1 1 0 1  
T d ( / S 4 )  - ~rd(/O2d) = (0 ,0 ,0 ,0 ,  1) -- ( 2 '  2 '  2 '  ' 2)  

1 1 1 1 = =  T1 
= (2 '  2 '  ~ , 0 , ~ )  

These are identical with the respective rows of the matrix (eq. 91) obtained by an 
alternative method. [] 

9. C o n c l u s i o n  

For integrating two concepts of different categories, marks and characters, we have 
proposed the concept of markaracter and discussed mathematical foundations for 
chemical applications. 

1. The correspondence between conjugate cyclic subgroups and conjugacy classes is 
discussed in terms of dominant classes. 



314 S. Fujita 

2. We consider coset representations concerning cyclic subgroups, which are called 
dominant representations (DRs). 

3. We construct a row vecter called a dominant markaracter (mark-character) by 
counting the numbers of fixed points corresponding to each DR. Such dominant 
markaracters for a non-redundant set of  DRs are collected to form a markaracter 
table. 

4. The markaracter table and its inverse are obtained from the usual mark table and 
its inverse. This procedure is based on concecutive concurrent interchanges of  the 
lower triangular matrix. 

5. The markaracter table is related to a subdominant markaracter table of  its subgroup 
so that the corresponding row of the former table is constructed from the latter. 

6. The data of the markaracter table are in turn used to construct a character table 
of the group, after each character is regarded as a markaracter and transformed 
into a multiplicity vector. 

7. The concept of  orbit index is proposed to classify multiplicity vectors; thus, the 
orbit index of each DR is proved to be equal to one. On the other hand, the orbit 
index of each irreducible representation is equal to zero, when conjugacy classes 
are equal to dominant classes. 
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